3.2.10 \(\int \frac {(a+b \log (c x^n))^2}{(d+e x)^3} \, dx\) [110]

3.2.10.1 Optimal result
3.2.10.2 Mathematica [A] (verified)
3.2.10.3 Rubi [A] (verified)
3.2.10.4 Maple [C] (warning: unable to verify)
3.2.10.5 Fricas [F]
3.2.10.6 Sympy [F]
3.2.10.7 Maxima [F]
3.2.10.8 Giac [F]
3.2.10.9 Mupad [F(-1)]

3.2.10.1 Optimal result

Integrand size = 20, antiderivative size = 126 \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=-\frac {b n x \left (a+b \log \left (c x^n\right )\right )}{d^2 (d+e x)}-\frac {b n \log \left (1+\frac {d}{e x}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^2 e}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e (d+e x)^2}+\frac {b^2 n^2 \log (d+e x)}{d^2 e}+\frac {b^2 n^2 \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{d^2 e} \]

output
-b*n*x*(a+b*ln(c*x^n))/d^2/(e*x+d)-b*n*ln(1+d/e/x)*(a+b*ln(c*x^n))/d^2/e-1 
/2*(a+b*ln(c*x^n))^2/e/(e*x+d)^2+b^2*n^2*ln(e*x+d)/d^2/e+b^2*n^2*polylog(2 
,-d/e/x)/d^2/e
 
3.2.10.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.16 \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e (d+e x)^2}+\frac {b n \left (\frac {a+b \log \left (c x^n\right )}{d (d+e x)}+\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 b d^2 n}-\frac {b n \left (\frac {\log (x)}{d}-\frac {\log (d+e x)}{d}\right )}{d}-\frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (\frac {d+e x}{d}\right )}{d^2}-\frac {b n \operatorname {PolyLog}\left (2,-\frac {e x}{d}\right )}{d^2}\right )}{e} \]

input
Integrate[(a + b*Log[c*x^n])^2/(d + e*x)^3,x]
 
output
-1/2*(a + b*Log[c*x^n])^2/(e*(d + e*x)^2) + (b*n*((a + b*Log[c*x^n])/(d*(d 
 + e*x)) + (a + b*Log[c*x^n])^2/(2*b*d^2*n) - (b*n*(Log[x]/d - Log[d + e*x 
]/d))/d - ((a + b*Log[c*x^n])*Log[(d + e*x)/d])/d^2 - (b*n*PolyLog[2, -((e 
*x)/d)])/d^2))/e
 
3.2.10.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {2756, 2789, 2751, 16, 2779, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx\)

\(\Big \downarrow \) 2756

\(\displaystyle \frac {b n \int \frac {a+b \log \left (c x^n\right )}{x (d+e x)^2}dx}{e}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e (d+e x)^2}\)

\(\Big \downarrow \) 2789

\(\displaystyle \frac {b n \left (\frac {\int \frac {a+b \log \left (c x^n\right )}{x (d+e x)}dx}{d}-\frac {e \int \frac {a+b \log \left (c x^n\right )}{(d+e x)^2}dx}{d}\right )}{e}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e (d+e x)^2}\)

\(\Big \downarrow \) 2751

\(\displaystyle \frac {b n \left (\frac {\int \frac {a+b \log \left (c x^n\right )}{x (d+e x)}dx}{d}-\frac {e \left (\frac {x \left (a+b \log \left (c x^n\right )\right )}{d (d+e x)}-\frac {b n \int \frac {1}{d+e x}dx}{d}\right )}{d}\right )}{e}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e (d+e x)^2}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {b n \left (\frac {\int \frac {a+b \log \left (c x^n\right )}{x (d+e x)}dx}{d}-\frac {e \left (\frac {x \left (a+b \log \left (c x^n\right )\right )}{d (d+e x)}-\frac {b n \log (d+e x)}{d e}\right )}{d}\right )}{e}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e (d+e x)^2}\)

\(\Big \downarrow \) 2779

\(\displaystyle \frac {b n \left (\frac {\frac {b n \int \frac {\log \left (\frac {d}{e x}+1\right )}{x}dx}{d}-\frac {\log \left (\frac {d}{e x}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d}}{d}-\frac {e \left (\frac {x \left (a+b \log \left (c x^n\right )\right )}{d (d+e x)}-\frac {b n \log (d+e x)}{d e}\right )}{d}\right )}{e}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e (d+e x)^2}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {b n \left (\frac {\frac {b n \operatorname {PolyLog}\left (2,-\frac {d}{e x}\right )}{d}-\frac {\log \left (\frac {d}{e x}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d}}{d}-\frac {e \left (\frac {x \left (a+b \log \left (c x^n\right )\right )}{d (d+e x)}-\frac {b n \log (d+e x)}{d e}\right )}{d}\right )}{e}-\frac {\left (a+b \log \left (c x^n\right )\right )^2}{2 e (d+e x)^2}\)

input
Int[(a + b*Log[c*x^n])^2/(d + e*x)^3,x]
 
output
-1/2*(a + b*Log[c*x^n])^2/(e*(d + e*x)^2) + (b*n*(-((e*((x*(a + b*Log[c*x^ 
n]))/(d*(d + e*x)) - (b*n*Log[d + e*x])/(d*e)))/d) + (-((Log[1 + d/(e*x)]* 
(a + b*Log[c*x^n]))/d) + (b*n*PolyLog[2, -(d/(e*x))])/d)/d))/e
 

3.2.10.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 2751
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_), x 
_Symbol] :> Simp[x*(d + e*x^r)^(q + 1)*((a + b*Log[c*x^n])/d), x] - Simp[b* 
(n/d)   Int[(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, n, q, r}, 
x] && EqQ[r*(q + 1) + 1, 0]
 

rule 2756
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), 
x_Symbol] :> Simp[(d + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/(e*(q + 1))), x] 
- Simp[b*n*(p/(e*(q + 1)))   Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^(p - 
 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, 
 -1] && (EqQ[p, 1] || (IntegersQ[2*p, 2*q] &&  !IGtQ[q, 0]) || (EqQ[p, 2] & 
& NeQ[q, 1]))
 

rule 2779
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r 
_.))), x_Symbol] :> Simp[(-Log[1 + d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)) 
, x] + Simp[b*n*(p/(d*r))   Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^(p - 
 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]
 

rule 2789
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_))/ 
(x_), x_Symbol] :> Simp[1/d   Int[(d + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/x 
), x], x] - Simp[e/d   Int[(d + e*x)^q*(a + b*Log[c*x^n])^p, x], x] /; Free 
Q[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[q, -1] && IntegerQ[2*q]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 
3.2.10.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.48 (sec) , antiderivative size = 435, normalized size of antiderivative = 3.45

method result size
risch \(-\frac {b^{2} \ln \left (x^{n}\right )^{2}}{2 e \left (e x +d \right )^{2}}-\frac {b^{2} n \ln \left (x^{n}\right ) \ln \left (e x +d \right )}{e \,d^{2}}+\frac {b^{2} n \ln \left (x^{n}\right )}{e d \left (e x +d \right )}+\frac {b^{2} n \ln \left (x^{n}\right ) \ln \left (x \right )}{e \,d^{2}}-\frac {b^{2} n^{2} \ln \left (x \right )^{2}}{2 e \,d^{2}}+\frac {b^{2} n^{2} \ln \left (e x +d \right )}{d^{2} e}-\frac {b^{2} n^{2} \ln \left (x \right )}{e \,d^{2}}+\frac {b^{2} n^{2} \ln \left (e x +d \right ) \ln \left (-\frac {e x}{d}\right )}{e \,d^{2}}+\frac {b^{2} n^{2} \operatorname {dilog}\left (-\frac {e x}{d}\right )}{e \,d^{2}}+\left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 a \right ) b \left (-\frac {\ln \left (x^{n}\right )}{2 e \left (e x +d \right )^{2}}+\frac {n \left (-\frac {\ln \left (e x +d \right )}{d^{2}}+\frac {1}{d \left (e x +d \right )}+\frac {\ln \left (x \right )}{d^{2}}\right )}{2 e}\right )-\frac {{\left (-i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )+i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}+i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}-i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}+2 b \ln \left (c \right )+2 a \right )}^{2}}{8 \left (e x +d \right )^{2} e}\) \(435\)

input
int((a+b*ln(c*x^n))^2/(e*x+d)^3,x,method=_RETURNVERBOSE)
 
output
-1/2*b^2*ln(x^n)^2/e/(e*x+d)^2-b^2/e*n*ln(x^n)/d^2*ln(e*x+d)+b^2*n*ln(x^n) 
/e/d/(e*x+d)+b^2/e*n*ln(x^n)/d^2*ln(x)-1/2*b^2/e*n^2/d^2*ln(x)^2+b^2*n^2*l 
n(e*x+d)/d^2/e-b^2/e*n^2/d^2*ln(x)+b^2/e*n^2/d^2*ln(e*x+d)*ln(-e*x/d)+b^2/ 
e*n^2/d^2*dilog(-e*x/d)+(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+I*b*P 
i*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-I*b*Pi*csgn 
(I*c*x^n)^3+2*b*ln(c)+2*a)*b*(-1/2*ln(x^n)/e/(e*x+d)^2+1/2/e*n*(-1/d^2*ln( 
e*x+d)+1/d/(e*x+d)+1/d^2*ln(x)))-1/8*(-I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I 
*c*x^n)+I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^ 
2-I*b*Pi*csgn(I*c*x^n)^3+2*b*ln(c)+2*a)^2/(e*x+d)^2/e
 
3.2.10.5 Fricas [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x + d\right )}^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))^2/(e*x+d)^3,x, algorithm="fricas")
 
output
integral((b^2*log(c*x^n)^2 + 2*a*b*log(c*x^n) + a^2)/(e^3*x^3 + 3*d*e^2*x^ 
2 + 3*d^2*e*x + d^3), x)
 
3.2.10.6 Sympy [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int \frac {\left (a + b \log {\left (c x^{n} \right )}\right )^{2}}{\left (d + e x\right )^{3}}\, dx \]

input
integrate((a+b*ln(c*x**n))**2/(e*x+d)**3,x)
 
output
Integral((a + b*log(c*x**n))**2/(d + e*x)**3, x)
 
3.2.10.7 Maxima [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x + d\right )}^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))^2/(e*x+d)^3,x, algorithm="maxima")
 
output
a*b*n*(1/(d*e^2*x + d^2*e) - log(e*x + d)/(d^2*e) + log(x)/(d^2*e)) - 1/2* 
b^2*(log(x^n)^2/(e^3*x^2 + 2*d*e^2*x + d^2*e) - 2*integrate((e*x*log(c)^2 
+ (d*n + (e*n + 2*e*log(c))*x)*log(x^n))/(e^4*x^4 + 3*d*e^3*x^3 + 3*d^2*e^ 
2*x^2 + d^3*e*x), x)) - a*b*log(c*x^n)/(e^3*x^2 + 2*d*e^2*x + d^2*e) - 1/2 
*a^2/(e^3*x^2 + 2*d*e^2*x + d^2*e)
 
3.2.10.8 Giac [F]

\[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )}^{2}}{{\left (e x + d\right )}^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))^2/(e*x+d)^3,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)^2/(e*x + d)^3, x)
 
3.2.10.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+b \log \left (c x^n\right )\right )^2}{(d+e x)^3} \, dx=\int \frac {{\left (a+b\,\ln \left (c\,x^n\right )\right )}^2}{{\left (d+e\,x\right )}^3} \,d x \]

input
int((a + b*log(c*x^n))^2/(d + e*x)^3,x)
 
output
int((a + b*log(c*x^n))^2/(d + e*x)^3, x)